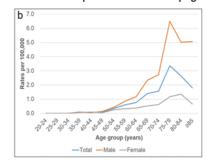
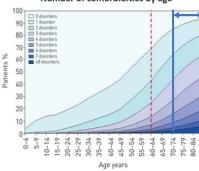


Alessandra Tedeschi Department of Hematology Niguarda Hospital Milano

Alessandra Tedeschi COI

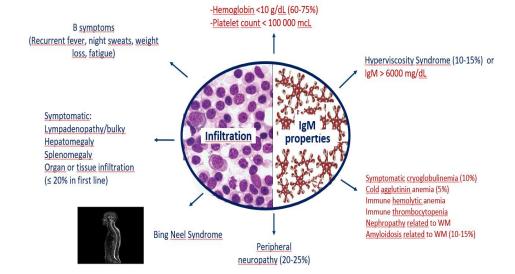

	Advisory Board	Speaker Bureau
Janssen	X	X
AbbVie	X	X
AstraZeneca	X	X
Beigene	X	X
Lilly	X	

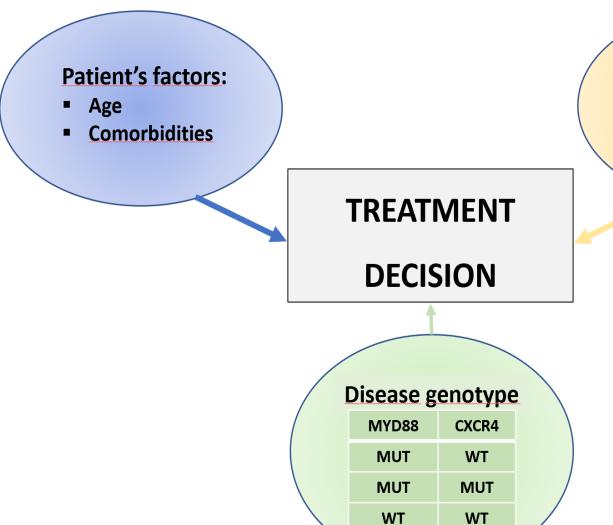
Treatment Decision in WM


Patient's factors:

- Age
- Comorbidities

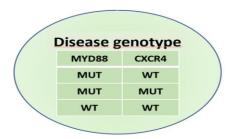
Incidence and prevalence of WM by age

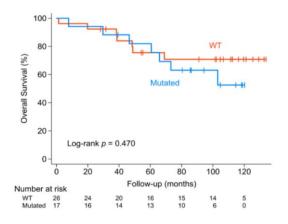

Number of comorbidities by age


TREATMENT DECISION

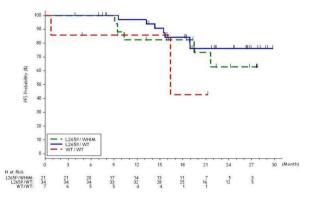
Disease factors:

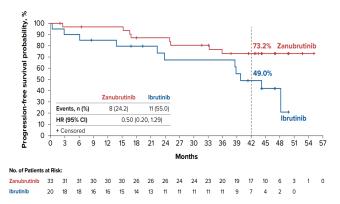
- Hypervicosity
- Bulky Disease
- Disorders IgM related

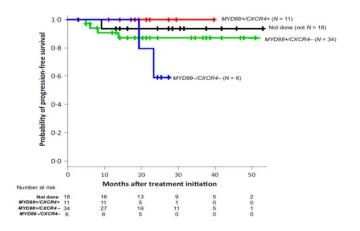

Treatment Decision in WM


Disease factors:

- Hypervicosity
- Bulky Disease
- Disorders IgM related


Role of genotype in WM treatment


Bortezomib Rituximab First Line according to CXCR4 mut


Impact of genotype with Ibrutinib

Zanubrutinib vs Ibrutinib: PFS in CXCR4 mut

Bendamustine Rituximab First Line

Zanubrutinib in MYD88 WT

MRR: 65%

At 42 months:

PFS: 53.8% (95% CI: 33.3, 70.6)

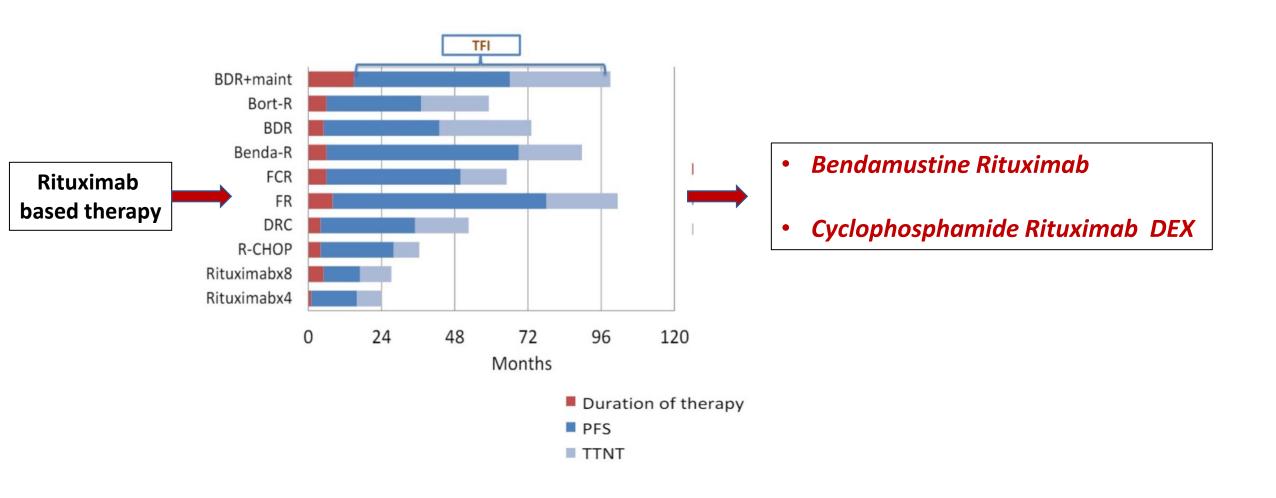
OS: 83.9% (95% CI: 62.6, 93.7)

First line treatment

Immuno-CHT

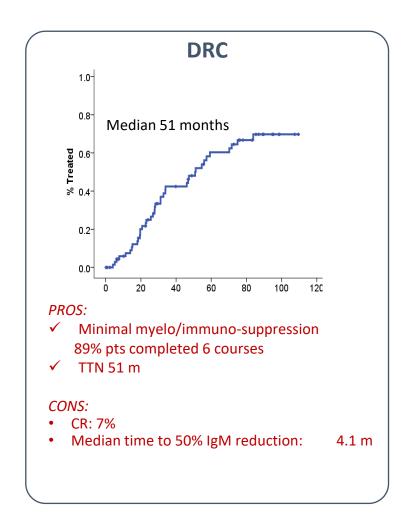
Benda Rituximab

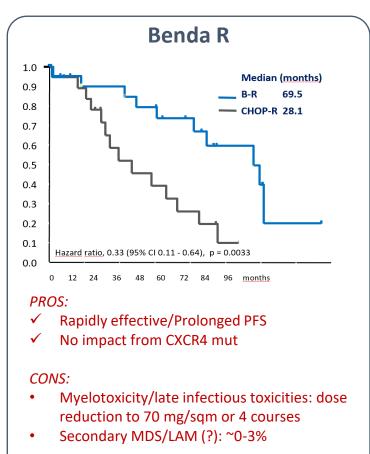
DRC

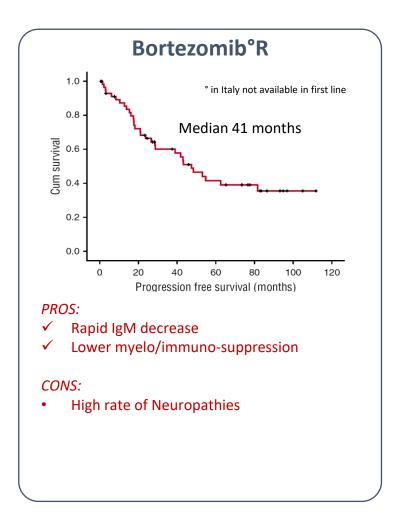

(Bortezomib-Rituximab)

BTKi
Only for pts unsuitable
for immuno-CHT

(Ibrutinib)°

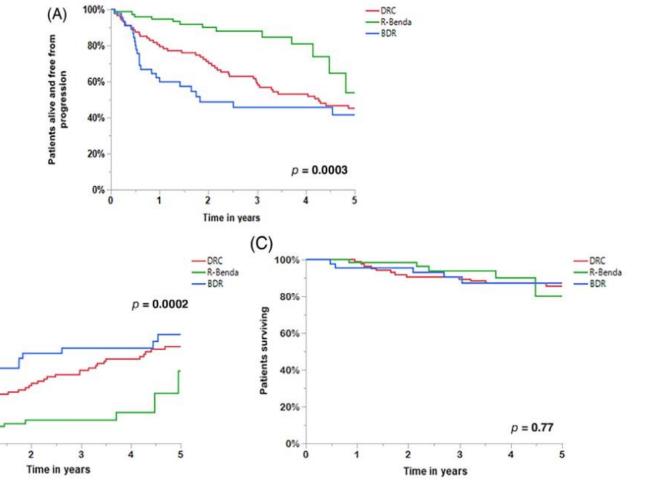

Zanubrutinib


First Line fixed duration therapy in WM



WM TREATMENT: first line

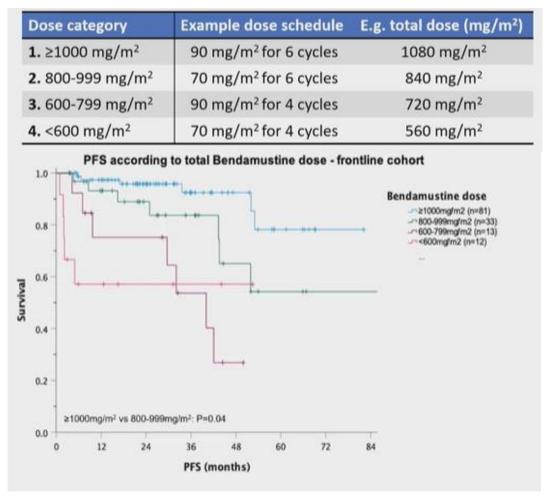
Rituximab Combination Treatment



(B)

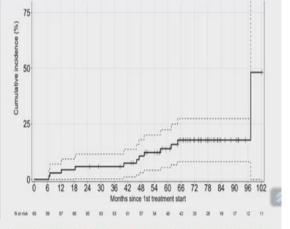
Patients requiring next-line of therpay

Assessment of fixed-duration therapies for TN WM


	MRR
R-Benda	96%
DRC	53%
BDR	68%

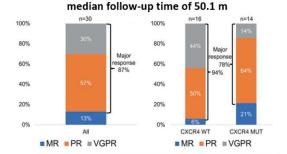
WM TREATMENT: first line

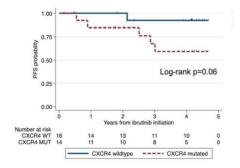
Bendamustine Rituximab


Outcomes according to Benda dosage

Late toxicities

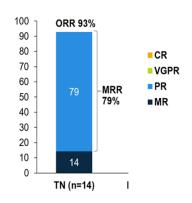
Type of Cytopenia	N	%	Duration (months) median (range)
Neutropenia	26	38%	9m (3-24)
Anemia	17	25%	6m (3-36)
Thrombocytopenia	11	16%	9m (3-36)

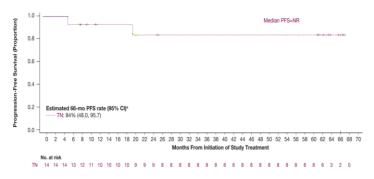

- Long-lasting cytopenia occurred in 35 patients (51%)
- Second malignancies: 12 patients
- 9 solid tumors (2 pancreas, 2 gastric, 1 colic, 1 oesophagus 1 lung, 1 skin, 1 breast)
- 3 myelodysplastic syndromes with 2 AML


Cumulative incidence of second malignancies of 17.66% [7.99-27.64] at 66 months

WM TREATMENT FIRST LINE TREATMENT BTKi

Ibrutinib° in MYD88mut




Median time to Major Response: 1.9 m Median longer for pts with: $CXCR4^{mut}$ 7.3 m $CXCR4^{wt}$ 1.8 m

Castillo et al., 2021

Acalabrutinib

Owen R et al., 2022

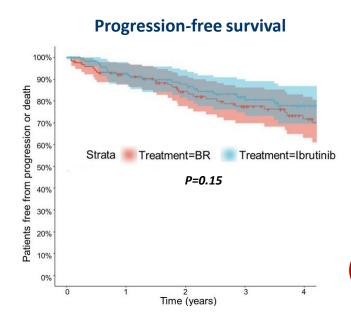
Aspen trial in MYD88^{mut}

median follow-up time of 19.4 m

		ΓN		
	Ibrutinib (n = 18)	Zanubrutinib (n = 19)		
Best overall response, n (%)				
CR	0 (0)	0 (0)		
VGPR	3 (17)	5 (26)		
PR	9 (50)	9 (47)		
MR	4 (22)	4 (21)		
SD	1 (6)	0 (0)		
PD	0 (0)	1 (5)		
Not evaluable*	1 (1)	0 (0)		
Response rates, % (95% CI)†				
VGPR or CR	17 (4-41)	26 (9-51)		
P	NR			
MRR	67 (41-87)	74 (49-91)		
ORR	89 (65-99)	95 (74-100)		
Duration of CR/VGPR, mo				
Median (range)	NE (0+, 3+)	NE (0+, 22+)		
18-Mo event-free rate, % (95% CI)§	NE (NE, NE)	100 (NE, NE)		
Duration of major response, months Median (range) 18-Mo event-free rate, % (95% CI)§	NE (3+, 28+) 00 (NE, NE)	NE (0+, 25+) 80 (39-95)		
PFS				
Median (range), mo	NE (0+, 31+)	NE (1, 31+)		
18-Mo event-free rate, % (95% CI)§	94 (63-99)	78 (52-91)		

Tam CS et al., 2020

[°] approved by EMA in unfit PTS not reimbursed in Italy


Ibrutinib or Benda R in TN WM?

Multi-institutional, international study in Europe and the USA

Median follow-up: 4.2 years

1:1 age-matched analysis of 246 pts MYD88^{mut}
Ibrutinib (n=123) BR (n=123)
Significant higher responses with BR
Discontinuation due to AE: 13% BR and 33% ibrutinib

4-year OS: BR 95% (95% CI 91–99)

versus

Ibrutinib 86% (95% CI 80-93)

In a bivariate analysis adjusting for age and the treatment type only age emerged as a predictor for OS (HR 7.2, p=0.0001)

For patients with *MYD88* L265P mutation, selection between the two approaches should be dictated by:

- Potential toxicities
- Patient comorbidities
- Patient/clinician preference (parenteral fixed duration vs. continuous oral)
- Access to therapies

May we improve DRC?

European Consortium Randomized trial NCT01788020

DRC

DRC Plus Bortezomib

Median 50.1 m (95% CI: 31.1; --)

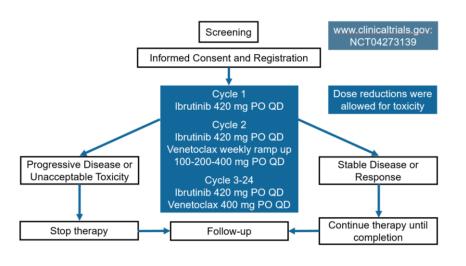
Median PFS NR (95% CI: 33.5; --)

Estimated PFS at 24 m: 72.8%

(p=0.32)

Estimated PFS at 24 m: 80.6%

B-DRC: major R **79.1** %

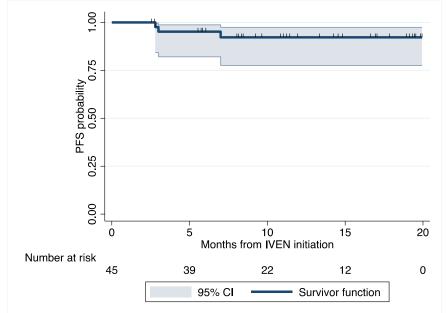

DRC: major R 68.9 %

grade ≥3 AEs DRC 47%

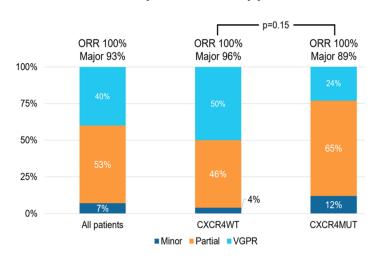
grade ≥3 AEs B-DRC 48%

At this time point of analysis, adding Bortezomib to DRC did not induce significant differences in PFS compared to DRC alone

Fixed duration therapy in first line with target agents Venetoclax plus Ibrutinib



Median TTMR: 1.9 months


Median TTMR: CXCR4^{MUT}: 2.8 months

CXCR4WT: 1.9 months

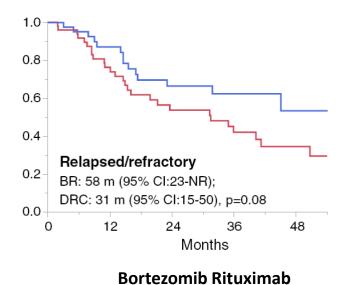
Median follow-up: 11 months

Response to therapy

Ibrutinib and venetoclax in previously untreated WM

Safety

Adverse events observed in ≥3 patients and of clinical importance

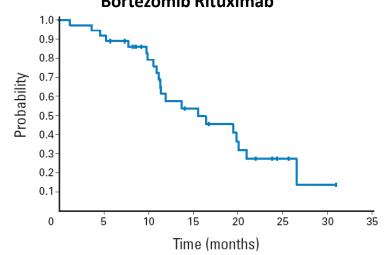

n=45

Adverse events	Grade 2	Grade 3	Grade 4	Grade 5	Total Safety
Anemia	1	2			3
Atrial fibrillation	1	2	1		4
Diarrhea	8	1			9
Reflux	10				10
Mucositis	7	2			9
Nausea	5				5
Neutropenia	1	10	3		14
Hyperphosphatemia	8				8
Muscle/joint pain	14	2			16
Skin rash	6				6
Ventricular arrhythmia	1		1	2	4
Laboratory TLS		2			2

TLS: tumor lysis syndrome

Salvage treatment

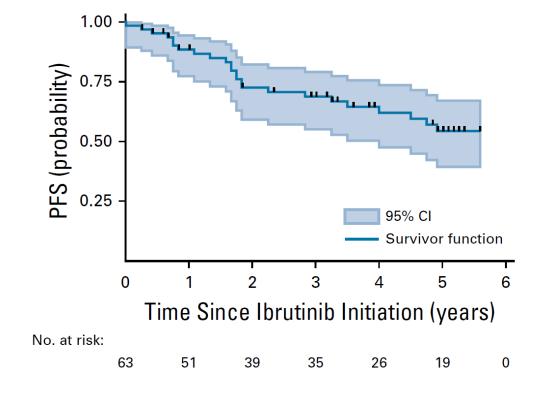
Repeat or alternate immuno-CHT **DRC or Benda R**



Benda R or DRC in RR WM

Inadequate treatment in first line!

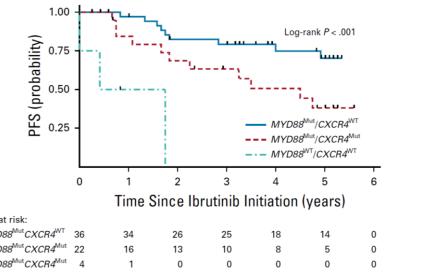
	BR second line	DRC second line
Chlorambucil	7%	16%
Rituximab monotherapy	45%	68%
FAMP/2CdA monotherapy	6 %	12%



ORIGINAL ARTICLE

Ibrutinib in Previously Treated Waldenström's Macroglobulinemia

Median study follow-up: 59 months Progression Free Survival



Symptomatic R/R ≥ 1 line of therapy

IBRUTINIB 420 mg
Continuous therapy

- Median n° of prior therapies: 2 (1-9)
- 40% pts refractory to most recent therapy

Variable	All	MYD88 ^{Mut} CXCR4 ^{NT}	MYD88 ^{Mut} CXCR4 ^{Mut}	MYD88 ^{WT} CXCR4 ^{NT}	P
No. of patients	63	36	22	4	
Overall response rate	57 (90.5)	36 (100.0)	19 (86.4)	2 (50.0)	< .0100
Major response rate	50 (79.4)	35 (97.2)	15 (68.2)	0 (0.0)	< .0001
Categorical responses					
No response	6 (9.5)	0 (0.0)	3 (13.6)	2 (50.0)	< .0001
Minor response	7 (11.1)	1 (2.8)	4 (18.2)	2 (50.0)	
Partial response	31 (49.2)	18 (50.0)	13 (59.1)	0 (0.0)	
Very good partial response	19 (30.2)	17 (47.2)	2 (9.1)	0 (0.0)	
Median time to response, months					
Major response (≥ partial response)	1.8	1.8	4.7	NA	.0200

Ibrutinib and Acalabrutinib studies in WM

Study	N° pts	ORR	CR+GVPR	PR	Median FU time	PFS	PFS
							CXCR4 ^{MUT} vs CXCR4 ^{WT}
Ibrutinib							
Treon et al 2015, 2021	63 RR	90.5%	30.2%	49.2%	59 m	Median PFS NR 5 year PFS rate, 54%	38% vs <mark>70%</mark> (5 y)
Trotman et al, 2021 Refractory to Rituximab based tx	31 RR	87%	29%	48%	58 m	Median PFS 39 m 60 m PFS rate 40%	18 m vs NR (5 y)
Ibrutinib+Rituximab							
Buske et al, 2022	41 RR	93%	34%	42%	50 m	Median PFS NR	63% vs <mark>72%</mark> (54 m)
						54 m PFS rate 70%	Not significant
Acalabrutinib°							
Owen et al, 2022	92 RR	95%	27%	57%	63.7 m	Median PFS: 67.5 m 66 m PFS rate 52%	Not done

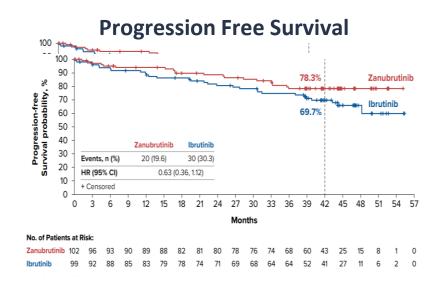
AEs of Ibrutinib and Acalabrutinib

Ibrutinib monotherapy phase II study: Treon et al 2021	Ibrutinib plus R Innovate study: Buske et al 2022	Acalabrutinib Phase II study: Owen et al 2022
Median FU: 59 months	Median FU: 50 months	Median FU: 60 months
✓ 8% off-study due to AE✓ 19% dose reductions	✓ 11% off-study due to AE✓ 23% dose reductions	✓ 16% off-study due to AE
 Hematological AE Grade ≥ 3 Neutropenia: 15.9% Thrombocytopenia: 11.1% 	 Hematological AE Grade ≥ 3 Neutropenia: 13% Thrombocytopenia: 1% 	Hematological AE Grade ≥ 3 NA
 AE of interest with BTKi Atrial arrhythmia any grade 12.7% Hypertension grade ≥ 2: 6% Pneumonia grade ≥ 2: 8% 	 AE of clinical interest any grade Atrial fibrillation 19% Hypertension: 25% Infections ≥ 3: 29% 	AE of clinical interest any grade • Atrial fibrillation 12% • Hypertension: 8% • Infections ≥ 3: 33%

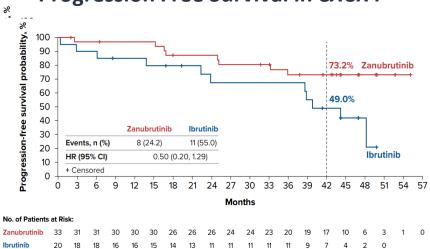
	Study	N° pts	FU	Discontinuations due to AE	Dose reductions
Abeykoon et al, 2019	Retrospective	80 TN/RR	19 m	16%	18%
Frustaci et al, 2022	Retrospective	206 R/R	27 m	11%	19%

ASPEN study, Phase III randomized study: Ibrutinib versus Zanubrutinib

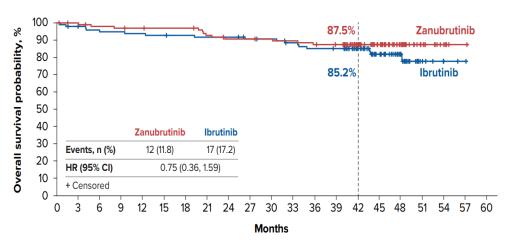
Responses by investigators


Median time to CR+VGPR: shorter for zanubrutinib 6.7 m vs ibrutinib: 16.6 m

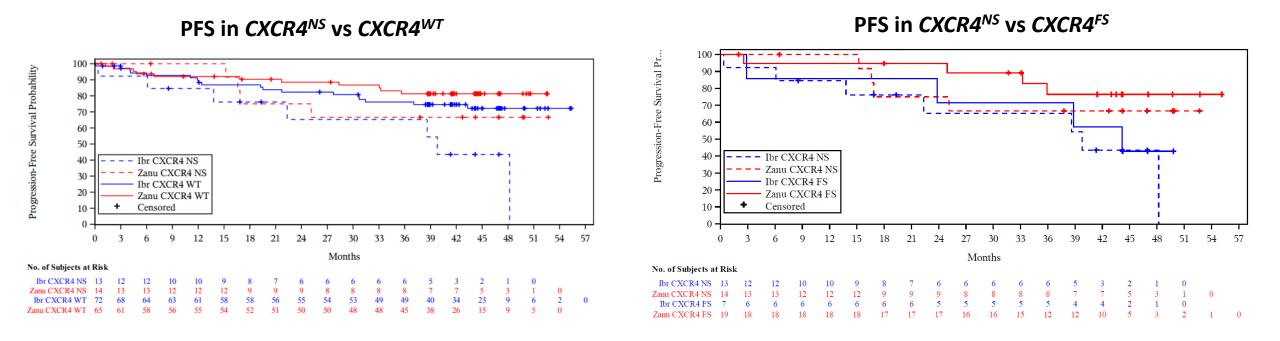
Primary objective significant superior CR+VGPR According to IRC with zanubruitnib: not achieved


Responses by CXCR4

	СХС	CR4 ^{MUT}	CX	CR4 ^{₩T}
	lbrutinib (n=20)	Zanubrutinib (n=33)	lbrutinib (n=72)	Zanubrutinib (n=65)
VGPR or better	2 (10.0)	7 (21.2)	22 (30.6)	29 (44.6)
Major response	13 (65.0)	26 (78.8)	61 (84.7)	54 (83.1)
Overall response	19 (95.0)	30 (90.9)	68 (94.4)	63 (96.9)
Time to major response, median (months)	6.6	3.4	2.8	2.8
Time to VGPR, median (months)	31.3	11.1	11.3	6.5


ASPEN Phase III randomized study: Ibrutinib versus Zanubrutinib

Overall Survival



No. of Patients at Risk:

 Zanubrutinib
 102
 100
 97
 96
 95
 94
 94
 89
 86
 86
 85
 84
 82
 80
 65
 49
 27
 13
 5
 1
 0

 Ibrutinib
 99
 96
 93
 92
 91
 90
 89
 88
 85
 84
 80
 77
 76
 62
 43
 21
 7
 3
 1
 0

Zanubrutinib trends favorable for PFS versus ibrutinib in both CXCR4^{NS} And CXCR4^{FS}

Mutation determined by NGS; NGS results were available for 92 patients in the ibrutinib arm and 98 patients in the zanubrutinib arm.

Zanubrutinib shows deeper and faster responses and favorable PFS versus ibrutinib in WM with *TP53^{MUT}*

		th <i>MYD88</i> ^{MUT} th ibrutinib	Patients with <i>MYD88</i> ^{MUT} treated with zanubrutinib		
Response	<i>TP53</i> ^{W⊤} (n=70)	<i>TP53</i> ^{MUT} (n=22)	<i>TP53</i> ^{W⊤} (n=72)	<i>TP53</i> ^{MUT} (n=26)	
VGPR or better, n (%)	21 (30.0)	3 (13.6)	27 (37.5)	9 (34.6)	
MR, n (%)	60 (85.7)*	14 (63.6)*	59 (81.9)	21 (80.8)	
Median time to VGPR or better (min, max), months	11.4 (2.0, 49.9)	24.9 (5.6, 46.9)	6.5 (1.9, 42.0)	11.1 (3.0, 26.0)	
Median time to MR (min, max), months	2.9 (0.9, 49.8)	3.0 (1.0, 13.8)	2.8 (0.9, 49.8)	2.8 (1.0, 5.6)	
PFS Events, n (%) ^b Event-free rate at 42 months, % P value ^c	18 (25.7%) 72.1 -	11 (50.0%) 57.9 0.027	10 (13.8%) 84.6 -	9 (34.6%) 62.0 0.120	

Data cutoff: October 31, 2021.

Bold text indicates >10% difference between MUT and WT. Bold red text highlights P value < 0.05.

^{*}P value <0.05, based on a logistic regression model with CXCR4 (WT, FS, NS), TP53 (WT, MUT), and TERT (WT, MUT) statuses as covariates. WT is the reference group.

^aMutation determined by NGS and available for 92 patients in the ibrutinib arm and 98 patients in the zanubrutinib arm. ^bIncludes the number of progressive disease or death.

^eEstimated using a Cox regression model with CXCR4 (WT, FS, NS), TP53 (WT, MUT), and TERT (WT, MUT) mutational status as covariates. WT is the reference group.

MR, major response; MUT, mutant; PFS, progression-free survival; MYD88, myeloid differentiation primary response 88 gene; NGS, next-generation sequencing; TERT, telomerase reverse transcriptase gene; TP53, tumor protein P53 gene; VGPR, very good partial response; WT, wild type.

ASPEN Phase III randomized study: Ibrutinib versus Zanubrutinib

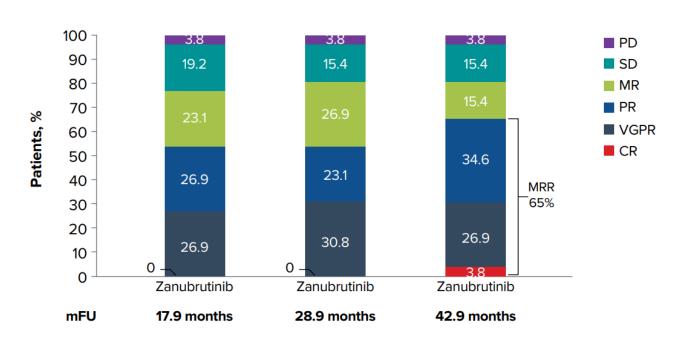
Patients disposition

Long term toxicity

	Cohort 1		
Category, n (%)	Ibrutinib (n=98)	Zanubrutinib (n=101)	
Patients with ≥1 AE	98 (100.0)	100 (99.0)	
Grade ≥3	71 (72.4)	75 (74.3)	
Serious	49 (50.0)	57 (56.4)	
AE leading to death	5 (5.1)ª	3 (3.0) ^b	
AE leading to treatment discontinuation	20 (20.4) ^d	9 (8.9)°	
AE leading to dose reduction	26 (26.5)	16 (15.8)	
AE leading to dose held	62 (63.3)	63 (62.4)	
COVID-19–related AE	4 (4.1)	4 (4.0)	

	All grades		Grade ≥3	
AEs,ª n (%)	Ibrutinib (n=98)	Zanubrutinib (n=101)	Ibrutinib (n=98)	Zanubrutinib (n=101)
Infection	78 (79.6)	80 (79.2)	27 (27.6)	22 (21.8)
Bleeding	61 (62.2)	56 (55.4)	10 (10.2)	9 (8.9)
Diarrhea	34 (34.7)	23 (22.8)	2 (2.0)	3 (3.0)
Hypertension*	25 (25.5)	15 (14.9)	20 (20.4)*	10 (9.9)
Atrial fibrillation/flutter*	23 (23.5)*	8 (7.9)	8 (8.2)*	2 (2.0)
Anemia	22 (22.4)	18 (17.8)	6 (6.1)	12 (11.9)
Neutropenia*b	20 (20.4)	35 (34.7)*	10 (10.2)	24 (23.8)*
Thrombocytopenia	17 (17.3)	17 (16.8)	6 (6.1)	11 (10.9)
Second primary malignancy/	17 (17.3)/	17 (16.8)/	3 (3.1)/	6 (5.9)/
nonskin cancers	6 (6.1)	6 (5.9)	3 (3.1)	4 (4.0)

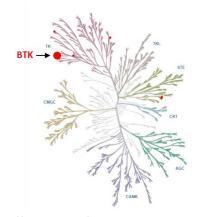
Bold text indicates rate of AEs with ≥10% (all grades) or ≥5% (grade ≥3) difference between arms.


Data cutoff: October 31, 2021. *Descriptive purposes only, 1-sided P < 0.025 in rate difference in all grades and/or grade ≥3.

[°]AE categories (grouped terms) of preferred terms by Medical Dictionary for Regulatory Activities v24.0. Including preferred terms of neutropenia, neutrophil count decreased, febrile neutropenia, and neutropenic sepsis.

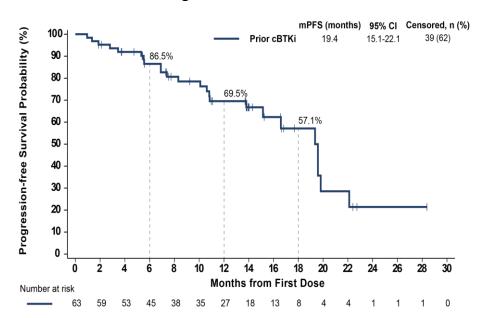
ASPEN study: Cohort 2 MYD88^{WT} (Zanubrutinib monotherapy)

Responses Overtime

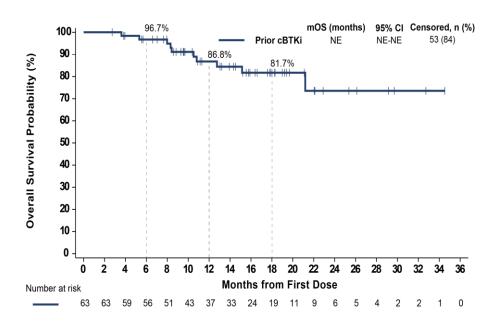

At 42 months:

PFS: 53.8% (95% CI: 33.3, 70.6)

OS: 83.9% (95% CI: 62.6, 93.7)


What comes next in WM?

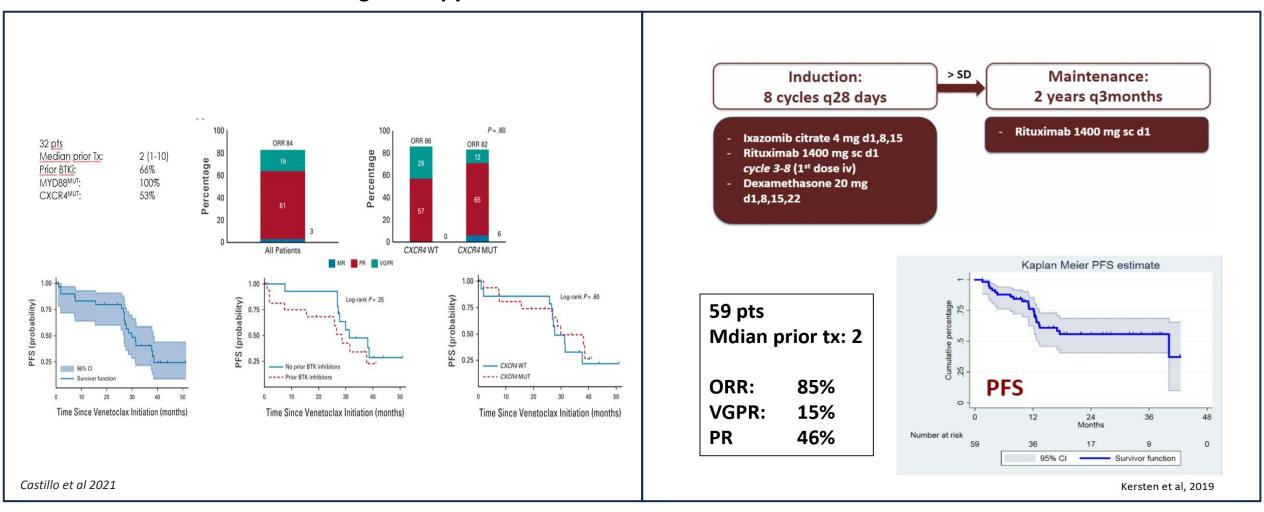
Pirtobrutinib: non covalent BTKi



Highly Selective for BTK^{1,2}

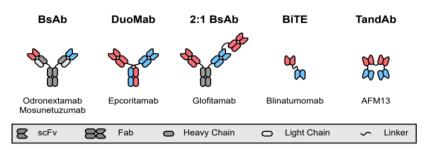
Progression-Free Survival

Overall Survival



- The median follow-up for PFS and OS in patients who received prior cBTKi was 14 and 16 months, respectively
- 55.6% (35/63) of patients who received prior cBTKi remain on pirtobrutinib

Effective salvage treatments (currently not in development)


Venetoclax as salvage therapy

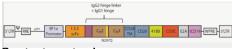
Next generation Proteasome inhibitors salvage therapy

Near Future treatments

→ Bispecific Ab

- ✓ Active in high grade and low grade lymhomas heavly pretreated
- ✓ Few pts with WM inlcuded in studies

Ansell S. IWWM 2022



- ✓ No <u>approved</u> CAR-T for WM treatment
- ✓ anti-WM activity in second-generation anti-CD19 CAR T cells
 3 pts treated:

treatment was <u>welltolerated</u> only g 1–2 toxicities responses were seen in all three patients

✓ CD20 CAR-T (MB-106) (third generation targeted CAR)

Palomba et al, 2021

2 pts treated:

responses were seen in all patients

FDA has granted orphan drug designation to MB-106, for the treatment of patient with WM

Shadman M. IWWM 2022

CONCLUSIONS

- TN patients:
 - Immuno-chemotherapy remains treatment of choice
 - Zanubrutinib in pts unsuitable for immuno-CHT (consider genotype)
- R/R patients:
 - BTKi treatment of choice:
 - consider genotype (better outcomes with zanubruitnib in high risk pts)
 - patients comorbidities (better tollerability with zanubruitnib)
- IBRUTINIB/ZANUBRUTINIB refractory pts:
 - pirtobrutinib
- UNMET NEED:
 - salvage after BTKi failures

Car-T protocol ongoing (ZUMA 25)